Maximum likelihood estimators in multivariate linear normal models
نویسندگان
چکیده
منابع مشابه
Corrected Maximum Likelihood Estimators in Linear Heteroskedastic Regression Models*
The linear heteroskedastic regression model, for which the variance of the response is given by a suitable function of a set of linear exogenous variables, is very useful in econometric applications. We derive a simple matrix formula for the n biases of the maximum likelihood estimators of the parameters in the variance of the response, where n is the sample size. These biases are easily obtain...
متن کاملMaximum-likelihood estimation for multivariate spatial linear coregionalization models
A multivariate spatial linear coregionalization model is considered that incorporates the Matérn class of covariograms. An EM algorithm is developed for maximum-likelihood estimation that has a few desirable properties and is capable of handling high-dimensional data. Most estimates in the EM algorithm are updated through closed form expressions and these estimates automatically satisfy necessa...
متن کاملModified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals
When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...
متن کاملMaximum Likelihood Estimation in Log - Linear Models
We study maximum likelihood estimation in log-linear models under conditional Poisson sampling schemes. We derive necessary and sufficient conditions for existence of the maximum likelihood estimator (MLE) of the model parameters and investigate estimability of the natural and mean-value parameters under a non-existent MLE. Our conditions focus on the role of sampling zeros in the observed tabl...
متن کاملMaximum likelihood estimators and random walks in long memory models
We consider statistical models driven by Gaussian and non-Gaussian self-similar processes with long memory and we construct maximum likelihood estimators (MLE) for the drift parameter. Our approach is based in the non-Gaussian case on the approximation by random walks of the driving noise. We study the asymptotic behavior of the estimators and we give some numerical simulations to illustrate ou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 1989
ISSN: 0047-259X
DOI: 10.1016/0047-259x(89)90061-4